矩阵相关操作和矩阵快速幂

矩阵相关操作和矩阵快速幂

  • 矩阵基本运算以及快速幂模板
  • POJ - 3070. Fibonacci
  • Hdu - 1757A. Simple Math Problem
  • Codeforces - 185A. Plant

矩阵基本运算以及快速幂模板

先看一下矩阵的乘法规则:

在这里插入图片描述

直接给出一个模板题,直接包含了基本的乘法和求幂,求幂的详细解释,可以看这篇乘法快速幂

题目来源: XYNU OJ

题目

在这里插入图片描述

注意:

  • 矩阵的乘法必须满足第一个矩阵的列 = 第二个矩阵的行;
  • 矩阵的求幂必须满足矩阵是一个方阵;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import java.io.BufferedInputStream;
import java.util.Scanner;

public class Main {

static class Matrix {
public int row;
public int col;
public int[][] m;

public Matrix(int row, int col) {
this.row = row;
this.col = col;
m = new int[row][col];
}
}

// 两个矩阵相加 --> a,b必须为 同型矩阵
static Matrix add(Matrix a, Matrix b) {
Matrix c = new Matrix(a.row, a.col);
for (int i = 0; i < a.row; i++) {
for (int j = 0; j < a.col; j++) {
c.m[i][j] = a.m[i][j] + b.m[i][j]; // sub 减法换成-
}
}
return c;
}

// 必须满足a.col = b.row 才能相乘
static Matrix mul(Matrix a, Matrix b) {
Matrix c = new Matrix(a.row, b.col); //注意这里

for (int i = 0; i < a.row; i++) {
for (int j = 0; j < b.col; j++) {
for (int k = 0; k < a.col; k++)
c.m[i][j] = c.m[i][j] + a.m[i][k] * b.m[k][j];
}
}
return c;
}

// 必须为 方阵才能 求幂
static Matrix pow(Matrix a, int k) { // 矩阵 a 的 k次幂
Matrix res = new Matrix(a.row, a.col); //求幂必须满足 a.row = a.col(也就是方阵)
for (int i = 0; i < a.row; i++)
res.m[i][i] = 1;

// 真正的快速幂
while (k > 0) {
if ((k & 1) != 0)
res = mul(res, a);
a = mul(a, a);
k >>= 1;
}
return res;
}

public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));

int n = cin.nextInt();
int k = cin.nextInt();

Matrix a = new Matrix(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
a.m[i][j] = cin.nextInt();
}
}

Matrix res = pow(a, k);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (j == n - 1) {
System.out.println(res.m[i][j]);
} else {
System.out.print(res.m[i][j] + " ");
}
}
}
}
}

POJ - 3070. Fibonacci

题目链接

http://poj.org/problem?id=3070

题目

在这里插入图片描述

解析

关键在于推导出递推式,也就是左边是一个A矩阵,B一般是一个列向量;
在这里插入图片描述

类似的规律:

在这里插入图片描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import java.io.BufferedInputStream;
import java.util.Scanner;

public class Main {

static class Matrix{
public int row;
public int col;
public int[][] m;

public Matrix(int row, int col) {
this.row = row;
this.col = col;
m = new int[row][col];
}
}

static final int mod = 10000;


static Matrix mul(Matrix a,Matrix b){
Matrix c = new Matrix(a.row,b.col); //注意这里

for(int i = 0; i < a.row; i++){
for(int j = 0; j < b.col; j++){
for(int k = 0; k < a.col; k++)
c.m[i][j] = (c.m[i][j] + a.m[i][k]*b.m[k][j]) % mod;
}
}
return c;
}

static Matrix pow(Matrix a,int k){
Matrix res = new Matrix(a.row,a.col); // 方阵
for(int i = 0; i < a.row; i++)
res.m[i][i] = 1;
while(k > 0){
if( (k&1) != 0)
res = mul(res,a);
a = mul(a,a);
k >>= 1;
}
return res;
}

public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));

while(cin.hasNext()){
int n = cin.nextInt();
if( n == -1)break;
if(n == 0){
System.out.println(0);
continue;
}

Matrix a = new Matrix(2,2);
a.m[0][0] = a.m[0][1] = a.m[1][0] = 1;
a.m[1][1] = 0;

Matrix res = pow(a,n-1);

System.out.println(res.m[0][0] % mod);
}
}

}


Hdu - 1757A. Simple Math Problem

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=1757

题目

在这里插入图片描述

解析

在这里插入图片描述
继续递推:

这里写图片描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import java.io.BufferedInputStream;
import java.util.Scanner;

public class Main {

static class Matrix{
public int row;
public int col;
public int[][] m;

public Matrix(int row, int col) {
this.row = row;
this.col = col;
m = new int[row][col];
}
}

static Matrix mul(Matrix a,Matrix b,int mod){
Matrix c = new Matrix(a.row,b.col); //注意这里

for(int i = 0; i < a.row; i++){
for(int j = 0; j < b.col; j++){
for(int k = 0; k < a.col; k++)
c.m[i][j] = (c.m[i][j] + a.m[i][k]*b.m[k][j]) % mod;
}
}
return c;
}

static Matrix pow(Matrix a,int k,int mod){
Matrix res = new Matrix(a.row,a.col); // 方阵
for(int i = 0; i < a.row; i++)
res.m[i][i] = 1;
while(k > 0){
if( (k&1) != 0)
res = mul(res,a,mod);
a = mul(a,a,mod);
k >>= 1;
}
return res;
}


public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));

while(cin.hasNext()){
int k = cin.nextInt();
int mod = cin.nextInt();

if(k < 10){
System.out.println(k);
continue;
}
Matrix a = new Matrix(10,10);
// init
for(int i = 0; i < 10; i++)
a.m[0][i] = cin.nextInt();
for(int i = 1; i < 10; i++)
a.m[i][i-1] = 1;

// computer matrix ^ (k-9)
Matrix res = pow(a,k-9,mod);

int sum = 0;
for(int i = 0; i < 10; i++)
sum += (res.m[0][i] * (9 - i)) % mod;

System.out.println(sum % mod); // also should mod
}
}
}

Codeforces - 185A. Plant

题目链接

http://codeforces.com/problemset/problem/185/A

题目

在这里插入图片描述

在这里插入图片描述

解析

在这里插入图片描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import java.io.BufferedInputStream;
import java.util.Scanner;

public class Main {

static class Matrix {
public int row;
public int col;
public long[][] m;

public Matrix(int row, int col) {
this.row = row;
this.col = col;
m = new long[row][col];
}
}

static final int mod = 1000000007;

static Matrix mul(Matrix a, Matrix b) {
Matrix c = new Matrix(a.row, b.col); //注意这里

for (int i = 0; i < a.row; i++) {
for (int j = 0; j < b.col; j++) {
for (int k = 0; k < a.col; k++)
c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
}
}
return c;
}

static Matrix pow(Matrix a, long k) {
Matrix res = new Matrix(a.row, a.col); // 方阵
for (int i = 0; i < a.row; i++)
res.m[i][i] = 1;
while (k > 0) {
if ((k & 1) != 0)
res = mul(res, a);
a = mul(a, a);
k >>= 1;
}
return res;
}

public static void main(String[] args) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));

long n = cin.nextLong();

Matrix a = new Matrix(2, 2);
a.m[0][0] = a.m[1][1] = 3;
a.m[0][1] = a.m[1][0] = 1;

Matrix res = pow(a, n);

System.out.println(res.m[0][0] % mod);
}
}
欢迎关注我们的公众号
0%